Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening.

Identifieur interne : 000111 ( Main/Exploration ); précédent : 000110; suivant : 000112

Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening.

Auteurs : Emily J. Strong [États-Unis] ; Kristen L. Jurcic Smith [États-Unis] ; Neeraj K. Saini [États-Unis] ; Tony W. Ng [États-Unis] ; Steven A. Porcelli [États-Unis] ; Sunhee Lee [États-Unis]

Source :

RBID : pubmed:32989037

Abstract

The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to progressive or latent infection. Autophagy is recognized as one component of host cell responses that has an essential role in innate and adaptive immunity to intracellular bacteria. Many microbes, including Mycobacterium tuberculosis, have evolved to evade or exploit autophagy, but the precise mechanisms and virulence factors are mostly unknown. Through a loss-of-function screening of an M. tuberculosis transposon mutant library, we identified 16 genes that contribute to autophagy inhibition, six of which encoded the PE/PPE protein family. Their expression in Mycobacterium smegmatis confirmed that these PE/PPE proteins inhibit autophagy and increase intracellular bacterial persistence or replication in infected cells. These effects were associated with increased mammalian target of rapamycin (mTOR) activity and also with decreased production of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). We also confirmed that the targeted deletion of the pe/ppe genes in M. tuberculosis resulted in enhanced autophagy and improved intracellular survival rates compared to those of wild-type bacteria in the infected macrophages. Differential expression of these PE/PPE proteins was observed in response to various stress conditions, suggesting that they may confer advantages to M. tuberculosis by modulating its interactions with host cells under various conditions. Our findings demonstrated that multiple M. tuberculosis PE/PPE proteins are involved in inhibiting autophagy during infection of host phagocytes and may provide strategic targets in developing therapeutics or vaccines against tuberculosis.

DOI: 10.1128/IAI.00269-20
PubMed: 32989037


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening.</title>
<author>
<name sortKey="Strong, Emily J" sort="Strong, Emily J" uniqKey="Strong E" first="Emily J" last="Strong">Emily J. Strong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jurcic Smith, Kristen L" sort="Jurcic Smith, Kristen L" uniqKey="Jurcic Smith K" first="Kristen L" last="Jurcic Smith">Kristen L. Jurcic Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Human Vaccine Institute, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Human Vaccine Institute, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saini, Neeraj K" sort="Saini, Neeraj K" uniqKey="Saini N" first="Neeraj K" last="Saini">Neeraj K. Saini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ng, Tony W" sort="Ng, Tony W" uniqKey="Ng T" first="Tony W" last="Ng">Tony W. Ng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Porcelli, Steven A" sort="Porcelli, Steven A" uniqKey="Porcelli S" first="Steven A" last="Porcelli">Steven A. Porcelli</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sunhee" sort="Lee, Sunhee" uniqKey="Lee S" first="Sunhee" last="Lee">Sunhee Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA sunhlee@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Human Vaccine Institute, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Human Vaccine Institute, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32989037</idno>
<idno type="pmid">32989037</idno>
<idno type="doi">10.1128/IAI.00269-20</idno>
<idno type="wicri:Area/Main/Corpus">000021</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000021</idno>
<idno type="wicri:Area/Main/Curation">000021</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000021</idno>
<idno type="wicri:Area/Main/Exploration">000021</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening.</title>
<author>
<name sortKey="Strong, Emily J" sort="Strong, Emily J" uniqKey="Strong E" first="Emily J" last="Strong">Emily J. Strong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jurcic Smith, Kristen L" sort="Jurcic Smith, Kristen L" uniqKey="Jurcic Smith K" first="Kristen L" last="Jurcic Smith">Kristen L. Jurcic Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Human Vaccine Institute, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Human Vaccine Institute, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saini, Neeraj K" sort="Saini, Neeraj K" uniqKey="Saini N" first="Neeraj K" last="Saini">Neeraj K. Saini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ng, Tony W" sort="Ng, Tony W" uniqKey="Ng T" first="Tony W" last="Ng">Tony W. Ng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Porcelli, Steven A" sort="Porcelli, Steven A" uniqKey="Porcelli S" first="Steven A" last="Porcelli">Steven A. Porcelli</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Albert Einstein College of Medicine, Bronx, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sunhee" sort="Lee, Sunhee" uniqKey="Lee S" first="Sunhee" last="Lee">Sunhee Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA sunhlee@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Human Vaccine Institute, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Human Vaccine Institute, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Infection and immunity</title>
<idno type="eISSN">1098-5522</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to progressive or latent infection. Autophagy is recognized as one component of host cell responses that has an essential role in innate and adaptive immunity to intracellular bacteria. Many microbes, including
<i>Mycobacterium tuberculosis</i>
, have evolved to evade or exploit autophagy, but the precise mechanisms and virulence factors are mostly unknown. Through a loss-of-function screening of an
<i>M. tuberculosis</i>
transposon mutant library, we identified 16 genes that contribute to autophagy inhibition, six of which encoded the PE/PPE protein family. Their expression in
<i>Mycobacterium smegmatis</i>
confirmed that these PE/PPE proteins inhibit autophagy and increase intracellular bacterial persistence or replication in infected cells. These effects were associated with increased mammalian target of rapamycin (mTOR) activity and also with decreased production of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). We also confirmed that the targeted deletion of the
<i>pe</i>
/
<i>ppe</i>
genes in
<i>M. tuberculosis</i>
resulted in enhanced autophagy and improved intracellular survival rates compared to those of wild-type bacteria in the infected macrophages. Differential expression of these PE/PPE proteins was observed in response to various stress conditions, suggesting that they may confer advantages to
<i>M. tuberculosis</i>
by modulating its interactions with host cells under various conditions. Our findings demonstrated that multiple
<i>M. tuberculosis</i>
PE/PPE proteins are involved in inhibiting autophagy during infection of host phagocytes and may provide strategic targets in developing therapeutics or vaccines against tuberculosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32989037</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5522</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Infection and immunity</Title>
<ISOAbbreviation>Infect Immun</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00269-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/IAI.00269-20</ELocationID>
<Abstract>
<AbstractText>The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to progressive or latent infection. Autophagy is recognized as one component of host cell responses that has an essential role in innate and adaptive immunity to intracellular bacteria. Many microbes, including
<i>Mycobacterium tuberculosis</i>
, have evolved to evade or exploit autophagy, but the precise mechanisms and virulence factors are mostly unknown. Through a loss-of-function screening of an
<i>M. tuberculosis</i>
transposon mutant library, we identified 16 genes that contribute to autophagy inhibition, six of which encoded the PE/PPE protein family. Their expression in
<i>Mycobacterium smegmatis</i>
confirmed that these PE/PPE proteins inhibit autophagy and increase intracellular bacterial persistence or replication in infected cells. These effects were associated with increased mammalian target of rapamycin (mTOR) activity and also with decreased production of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). We also confirmed that the targeted deletion of the
<i>pe</i>
/
<i>ppe</i>
genes in
<i>M. tuberculosis</i>
resulted in enhanced autophagy and improved intracellular survival rates compared to those of wild-type bacteria in the infected macrophages. Differential expression of these PE/PPE proteins was observed in response to various stress conditions, suggesting that they may confer advantages to
<i>M. tuberculosis</i>
by modulating its interactions with host cells under various conditions. Our findings demonstrated that multiple
<i>M. tuberculosis</i>
PE/PPE proteins are involved in inhibiting autophagy during infection of host phagocytes and may provide strategic targets in developing therapeutics or vaccines against tuberculosis.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Strong</LastName>
<ForeName>Emily J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jurcic Smith</LastName>
<ForeName>Kristen L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Human Vaccine Institute, Duke University, Durham, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saini</LastName>
<ForeName>Neeraj K</ForeName>
<Initials>NK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ng</LastName>
<ForeName>Tony W</ForeName>
<Initials>TW</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porcelli</LastName>
<ForeName>Steven A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Sunhee</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2599-6938</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA sunhlee@utmb.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Human Vaccine Institute, Duke University, Durham, North Carolina, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI127711</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Infect Immun</MedlineTA>
<NlmUniqueID>0246127</NlmUniqueID>
<ISSNLinking>0019-9567</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Mycobacterium tuberculosis</Keyword>
<Keyword MajorTopicYN="N">PE/PPE proteins</Keyword>
<Keyword MajorTopicYN="N">autophagy</Keyword>
<Keyword MajorTopicYN="N">high-throughput screen</Keyword>
<Keyword MajorTopicYN="N">host-pathogen interactions</Keyword>
<Keyword MajorTopicYN="N">innate immunity</Keyword>
<Keyword MajorTopicYN="N">intracellular growth</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>5</Hour>
<Minute>31</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32989037</ArticleId>
<ArticleId IdType="pii">IAI.00269-20</ArticleId>
<ArticleId IdType="doi">10.1128/IAI.00269-20</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Global tuberculosis report 2018. 2019.</Citation>
</Reference>
<Reference>
<Citation>Atesoh Awuh J, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci. 2017;74:1625–1648.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00018-016-2422-8</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stanley SA, Cox JS. Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr Top Microbiol Immunol. 2013;374:211–241.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/82_2013_332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16:463–496.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/cmr.16.3.463-496.2003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jagannath C, Lindsey DR, Dhandayuthapani D, Xu Y, Hunter RL Jr, Eissa NT. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med. 2009;15:267–276.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nm.1928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Knodler LA, Celli J. Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol. 2011;13:1319–1327.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1462-5822.2011.01632.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gutierrez MG, Master SS, Sing SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119:753–766.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cell.2004.11.038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alonso S, Pethe K, Russell DG, Purdy GE. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A. 2007;104:6031–6036.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.0700036104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zullo AJ, Jurcic Smith KL, Lee S. Mammalian target of rapamycin inhibition and mycobacterial survival are uncoupled in murine macrophages. BMC Biochem. 2014;15:4.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/1471-2091-15-4</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS, Bhattacharya D, Yang H, Hutt J, Lyons CR, Dobos KM, Deretic V. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A. 2012;109:E3168–E3176.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.1210500109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Harris J. Autophagy and cytokines. Cytokine. 2011;56:140–144.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cyto.2011.08.022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Harris J. Autophagy and IL-1 family cytokines. Front Immunol. 2013;4:83.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fimmu.2013.00083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Harris J, Keane J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin Exp Immunol. 2010;161:1–9.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1365-2249.2010.04146.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shi C-S, Shenderov K, Huang N-N, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13:255–263.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/ni.2215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Van Grol J, Subauste C, Andrade RM, Fujinaga K, Nelson J, Subauste CS. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS One. 2010;5:e11733.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0011733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ní Cheallaigh C, Keane J, Lavelle EC, Hope JC, Harris J. Autophagy in the immune response to tuberculosis: clinical perspectives. Clin Exp Immunol. 2011;164:291–300.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1365-2249.2011.04381.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Park H-J, Lee SJ, Kim S-H, Han J, Bae J, Kim SJ, Park C-G, Chun T. IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol Immunol. 2011;48:720–727.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.molimm.2010.10.020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shin D-M, Jeon B-Y, Lee H-M, Jin HS, Yuk J-M, Song C-H, Lee S-H, Lee Z-W, Cho S-N, Kim J-M, Friedman RL, Jo E-K. Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 2010;6:e1001230.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.ppat.1001230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Duan L, Yi M, Chen J, Li S, Chen W. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing acetylation of histone H3. Biochem Biophys Res Commun. 2016;473:1229–1234.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.bbrc.2016.04.045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-Velayudhan S, Carreño LJ, Xu J, Chan J, Larsen MH, Jacobs WR Jr, Porcelli SA. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol. 2016;1:16133.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nmicrobiol.2016.133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Deng W, Long Q, Zeng J, Li P, Yang W, Chen X, Xie J. Mycobacterium tuberculosis PE_PGRS41 enhances the intracellular survival of M. smegmatis within macrophages via blocking innate immunity and inhibition of host defense. Sci Rep. 2017;7:46716.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/srep46716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chai Q, Wang X, Qiang L, Zhang Y, Ge P, Lu Z, Zhong Y, Li B, Wang J, Zhang L, Zhou D, Li W, Dong W, Pang Y, Gao GF, Liu CH. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10:1973.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41467-019-09955-8</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao L-Y. A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol. 2007;66:787–800.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1365-2958.2007.05959.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MacGurn JA, Cox JS. A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun. 2007;75:2668–2678.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/IAI.01872-06</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 2012;8:1357–1370.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4161/auto.20881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150:803–815.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cell.2012.06.040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry IIC, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream M-A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–544.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/31159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bottai D, Brosch R. Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol Microbiol. 2009;73:325–328.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1365-2958.2009.06784.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Abdallah AM, Gey van Pittius NC, DiGiuseppe Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, Appelmelk BJ, Bitter W. Type VII secretion - mycobacteria show the way. Nat Rev Microbiol. 2007;5:883–891.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nrmicro1773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zullo AJ, Lee S. Mycobacterial induction of autophagy varies by species and occurs independently of mammalian target of rapamycin inhibition. J Biol Chem. 2012;287:12668–12678.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1074/jbc.M111.320135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lerena MC, Colombo MI. Mycobacterium marinum induces a marked LC3 recruitment to its containing phagosome that depends on a functional ESX-1 secretion system. Cell Microbiol. 2011;13:814–835.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1462-5822.2011.01581.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardenal-Muñoz E, Arafah S, López-Jiménez AT, Kicka S, Falaise A, Bach F, Schaad O, King JS, Hagedorn M, Soldati T. Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner. PLoS Pathog. 2017;13:e1006344.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.ppat.1006344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol. 2006;6:95.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/1471-2148-6-95</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sampson SL. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol. 2011;2011:497203.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1155/2011/497203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Singh VK, Berry L, Bernut A, Singh S, Carrère-Kremer S, Viljoen A, Alibaud L, Majlessi L, Brosch R, Chaturvedi V, Geurtsen J, Drancourt M, Kremer L. A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts. Cell Microbiol. 2016;18:1489–1507.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/cmi.12606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Iantomasi R, Sali M, Cascioferro A, Palucci I, Zumbo A, Soldini S, Rocca S, Greco E, Maulucci G, De Spirito M, Fraziano M, Fadda G, Manganelli R, Delogu G. PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol. 2012;14:356–367.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1462-5822.2011.01721.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brennan MJ. The enigmatic PE/PPE multigene family of mycobacteria and tuberculosis vaccination. Infect Immun. 2017;85:e00969-16.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/IAI.00969-16</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CMJE, Luirink J, Bitter W. General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A. 2012;109:11342–11347.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.1119453109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/msb.2011.75</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Köster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, Grigsby SJ, Mittal E, Park HS, Jones V, Hsu F-F, Jackson M, Sassetti CM, Philips JA. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci U S A. 2017;114:E8711–E8720.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.1707792114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–335.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nature09782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Deretic V. Autophagy in tuberculosis. Cold Spring Harb Perspect Med. 2014;4:a018481.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/cshperspect.a018481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Singh P, Rao RN, Reddy JRC, Prasad R, Kotturu SK, Ghosh S, Mukhopadhyay S. PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence. Sci Rep. 2016;6:21624.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/srep21624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Delogu G, Pusceddu C, Bua A, Fadda G, Brennan MJ, Zanetti S. Rv1818c‐encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol Microbiol. 2004;52:725–733.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1365-2958.2004.04007.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Målen H, De Souza GA, Pathak S, Søfteland T, Wiker HG. Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. BMC Microbiol. 2011;11:18.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/1471-2180-11-18</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wang Q, Boshoff HIM, Harrison JR, Ray PC, Green SR, Wyatt PG, Barry IIC. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science. 2020;367:1147–1151.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.aav5912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Korycka-Machała M, Pawełczyk J, Borówka P, Dziadek B, Brzostek A, Kawka M, Bekier A, Rykowski S, Olejniczak AB, Strapagiel D, Witczak Z, Dziadek J. PPE51 is involved in the uptake of disaccharides by Mycobacterium tuberculosis. Cells. 2020;9:603.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/cells9030603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Baker JJ, Abramovitch RB. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Sci Rep. 2018;8:4168.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41598-018-22343-4</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Budzik JM, Swaney DL, Jimenez-Morales D, Johnson JR, Garelis NE, Repasy T, Roberts AW, Popov LM, Parry TJ, Pratt D, Ideker T, Krogan NJ, Cox JS. Dynamic post-translational modification profiling of M. tuberculosis-infected primary macrophages. Elife. 2020;9:e51461.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.7554/eLife.51461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, Virgin HW, Stallings CL. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565–569.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nature16451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JWM, Joosten LAB, Crevel RV, Netea MG. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology. 2011;134:341–348.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1365-2567.2011.03494.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stover CK, De La Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR Jr, Bloom BR. New use of BCG recombinant vaccines. Nature. 1991;351:456–460.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/351456a0</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jurcic Smith KL, Lee S. Inhibition of apoptosis by Rv2456c through nuclear factor κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol. 2016;5:426–436.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijmyco.2016.06.018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Klionsky D, Abeliovich H, Agostinis P, Agrawal D, Aliev G, Askew D, Baba M, Baehrecke E, Bahr B, Ballabio A, Bamber B, Bassham D, Bergamini E, Bi X, Biard-Piechaczyk M, Blum J, Bredesen D, Brodsky J, Brumell J, Brunk U, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin L, Choi A, Chu C, Chung J, Clarke P, Clark R, Clarke S, Clavé C, Cleveland J, Codogno P, Colombo M, Coto-Montes A, Cregg J, Cuervo A, Debnath J, Demarchi F, Dennis P, Dennis P, Deretic V, Devenish R, Di Sano F, Dice J, Difiglia M, Dinesh-Kumar S, Distelhorst C, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autphagy. 2008;4:151–175.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4161/auto.5338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Venkataraman B, Gupta N, Gupta A. A robust and efficient method for the isolation of DNA-free, pure and intact RNA from Mycobacterium tuberculosis. J Microbiol Methods. 2013;93:198–202.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.mimet.2013.03.018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–1108.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nprot.2008.73</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rezwan M, Lanéelle MA, Sander P, Daffé M. Breaking down the wall: fractionation of mycobacteria. J Microbiol Methods. 2007;68:32–39.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.mimet.2006.05.016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Slayden RA, Barry CE. Analysis of the lipids of Mycobacterium tuberculosis. 2001;54.</Citation>
</Reference>
<Reference>
<Citation>Tran AT, Watson EE, Pujari V, Conroy T, Dowman LJ, Giltrap AM, Pang A, Wong WR, Linington RG, Mahapatra S, Saunders J, Charman SA, West NP, Bugg TDH, Tod J, Dowson CG, Roper DI, Crick DC, Britton WJ, Payne RJ. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat Commun. 2017;8:14414.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/ncomms14414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bardarov S, Bardarov S Jr, Pavelka MS Jr, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR Jr.. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology. 2002;148:3007–3017.</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1099/00221287-148-10-3007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Texas</li>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Strong, Emily J" sort="Strong, Emily J" uniqKey="Strong E" first="Emily J" last="Strong">Emily J. Strong</name>
</region>
<name sortKey="Jurcic Smith, Kristen L" sort="Jurcic Smith, Kristen L" uniqKey="Jurcic Smith K" first="Kristen L" last="Jurcic Smith">Kristen L. Jurcic Smith</name>
<name sortKey="Lee, Sunhee" sort="Lee, Sunhee" uniqKey="Lee S" first="Sunhee" last="Lee">Sunhee Lee</name>
<name sortKey="Lee, Sunhee" sort="Lee, Sunhee" uniqKey="Lee S" first="Sunhee" last="Lee">Sunhee Lee</name>
<name sortKey="Lee, Sunhee" sort="Lee, Sunhee" uniqKey="Lee S" first="Sunhee" last="Lee">Sunhee Lee</name>
<name sortKey="Ng, Tony W" sort="Ng, Tony W" uniqKey="Ng T" first="Tony W" last="Ng">Tony W. Ng</name>
<name sortKey="Porcelli, Steven A" sort="Porcelli, Steven A" uniqKey="Porcelli S" first="Steven A" last="Porcelli">Steven A. Porcelli</name>
<name sortKey="Porcelli, Steven A" sort="Porcelli, Steven A" uniqKey="Porcelli S" first="Steven A" last="Porcelli">Steven A. Porcelli</name>
<name sortKey="Saini, Neeraj K" sort="Saini, Neeraj K" uniqKey="Saini N" first="Neeraj K" last="Saini">Neeraj K. Saini</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000111 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000111 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32989037
   |texte=   Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32989037" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020